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A+shcl. Linkar and non-&ear transp+ pmperties gf carriers in non-parabolic Kane bands 
are investigated using the two extended balance equations introduced by Mabus, Sala and 
De Meyer (MSD) and by Lei. Formally, the MSD equations describe the motion of a single 
particle with fixed charge,and fixed mass. while the Lei equations describe the motion of a 
single particle having fixed charge but variable effective mass, In the parabolic limit these WO 
sets of equations are identical and reduce to the original Lei-ling balance equations. In the 
non-parabalic case, although the linear resistivities predicted by the Lei and MSD equations,are 
nearly the same for weakly to medially non-pxabolic systems, non-linear drift-velocity-field 
behaviour-obtained from these two sets of equations shows marked differences for medial and 
strong non-parabolicity. The reasons for these differences are discussed. 

.,,. 

1. Introduction 

Band non-parabolicity of electrons has been observed to influence many features of narrow- 
gap semiconductors where the energy bands are non-parabolic, resulting in special transport 
behaviour of these materials [I]. In the extremely non-parabolic band case, such as in a 
miniband of a semiconductor superlattice. electron conduction exhibits negative differential 
mobility 12.1. A tight-binding model is widely used for describing superlattice minibands 
and the Kane IC . p model [3] is believed to be suitable for describing most of the energy 
bank, in narrow-gap semiconductors. The transport properties related to energy band’ non- 
parabolicity have been extensively studied using the Boltzmann equation [4] and Monte 
Carlo simulations 15-71, 

A few years ago, Lei and Ting [8]  proposed a balance equation theory for high-field 
electronic transport in semiconductors. The original equations were derived for parabolic 
bands or for systems that can be described by effective-mass approximations. In an attempt 
to extend the Lei-Ting theory to non-parabolic bands, Magnus, Sala and De Meyer [9] 
(MSD) suggested that the exact set of original Lei-Ting balance equations given in [SI can 
still be used to describe non-parabolic band structures, as long as the non-parabolic energy 
dispersion relation is taken into account in the electron density-density correlation function. 
They observed marked differences in the behaviour of this quantity in a parabolic and a 
non-parabolic band structure [9] and investigated electronic transport i n  AI,Ga,-,As/GaAs 
heterojunctions [IO] with non-parabolicity included. However, it fails to produce a negative 
differential mobility in superlattice miniband transport [Ill.  On the other hand, one of 
the present authors proposed another extension of the Lei-Ting balance equations to an 
arbitrary energy band [IZ], in which two parameters (centre-of-mass momentum and electron 
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temperature) are used to describe the hot carrier transport, and an ensemble-averaged inverse 
effective-mass tensor is introduced, which carries the non-parabolicity together with the 
velocity function and density-density correlation function. Lei’s equations have been 
applied to superlattice miniband transport, obtaining the Esaki-Tsu negative differential 
velocity in good agreement with experiment [ 13,141. However. they have not yet been 
applied to non-parabolic band structures other than those of the tight-binding type. 

The purpose of this paper is to compare the balance equations introduced by Lei and 
MSD through their application to hot electron transport in the same non-parabolic Kane band 
structure with varying degrees of non-parabolicity. 

X M Weng and X L Lei 

2. The MSD and Lei equations 

We consider an interacting electron system that consists of N electrons moving within a 
GaAs background under the influence of a uniform electric field E ,  the direction of which 
is taken as the z axis. The electron conduction band spechum &(k) is taken as the Kane 
k . p model @ = 1 = ks throughout the paper): 

kZ 
E ( l  +CY&) = - 

2m 

where m = 0.067mo is the electron band mass in GaAs, and mo is the free electron mass. 
The non-parabolic coefficient of the conduction band, CY, is generally taken as IY = l/Eg, 
E, being the band gap between the conduction and valence bands. Here we treat IY as a 
parameter to measure the non-parabolicity. 

According to MSD [9, lo], the non-parabolicity of the band structure only enters the 
density-density correlation function through a modification of the expression for the electron 
energy. Force and energy balance equations for a non-parabolic band are the same as those 
in the original Lei-ling balance equations for a parabolic band [8 ] ,  in which the centre-of- 
mass velocity Ud. i.e. the drift velocity of the electron system, and the electron temperature 
T, are used as fundamental parameters, and may be written as follows: 

eE Fi Fp -+-+-=O 
m m m 

and 

Vd - w = 0. (3) 

The frictional forces due to impurity and phonon scatterings, Fi and F’, are given by 
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and the power dissipation rate from the electron system to the phonon system is 

In these equations, q is the impurity density, Qqi is the frequency of the phonon with 
wavevector q in branch A;  u(q )  and M ( q ,  A) are the Fourier representations of the impurity 
potential and electron-phonon coupling matrix element. The symbol T denotes the lattice 
temperature, and n ( x )  = (e" - 1)-' is the Bose function; g(k, q) is a form factor determined 
by the electron wavefunction. and (with u,(q) = eZ/coq2) 

is the RPA dielectric function of the electron system, with ily(k, q, UJ) and il;(k. q, w )  being 
the real and imaginary parts of the densitydensity correlation function in the absence of 
the intercarrier Coulomb interaction, IIo(k, q. w ) :  

Here 

f ( ~ ( k ) ,  T,) = Iexp [ ( E @ )  - W T e ]  + 1 t- '  (9) 

is the Fermi function at electron temperature Te and p is the chemical potential. which is 
determined by the total number of electrons, N, according to 

On the other hand, Lei's extended equations [12] use the centre-of-mass momentum 
Pd = Npd and the electron temperature Te as fundamental parameters. The major part 
of the non-parabolic effect on transport shows up through the ensemble-averaged inverse 
effective-mass tensor IC, which is defined by 

where 

E(k) E(k - pd) 

is the relative electron energy. Non-parabolicity also shows up through the energy function 
~ ( k )  and the velocity function v(k) V&(k). The average drift velocity of the electron 
system is given by 

The force and energy balance equations for a non-parabolic band take the form 

e E .  IC + A, + A, = 0 (14) 
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and 
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eE "ud - w = 0. (15) 

The accelerations due to impurity and phonon scatterings, Ai and A,, and the energy 
dissipation rate, W, are respectively 

Although formally the energy balance equation in the MSD and Lei prescriptions is 
similar (the expressions for the energy transfer rate, W, however, are not equivalent), the 
force balance equations, i.e. the equation of motion of the centre of mass, are apparently 
different in the two cases. The force balance equation (2) in the MSD case describes the 
motion of a single particle having fixed charge and fixed mass, while the force balance 
equation (14) in Lei's case describes the motion of a single particle having fixed charge 
but variable ( p d -  and T,-dependent) inverse effective mass IC. Nevertheless, both sets of 
balance equations reduce to the original Lei-Ting balance equations in the parabolic limit 
(or = 0). The MSD equations have been used to calculate supeilattice miniband transport, 
but no negative differential mobility has been found in the wide ranges of structure and 
material parameters investigated [I  I]. On the other hand, Lei's equations are able to give 
Esaki-Tsu negative differential mobility in the superlattice vertical transport at high electric 
field with predictions in good agreement with experiment [13,14]. 

3. Non-linear and Linear transport 

In order to quantitatively compare the two extended balance equations in an application to 
electron transport in narrow-gap semiconductors, we have numerically calculated the linear 
and non-linear transport properties using the MSD and Lei equations for Kane non-parabolic 
band systems. The dominant scatterings are assumed to be polar optic phonons and randomly 
distributed impurities. ?he material parameters are taken as the well known bulk values of 
G a s :  Lo-phonon energy = 35.4 meV, low-frequency dielectric constant K = 12.9 and 
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Figure 1. The drift velocity calculated from MSD Figure 2. The electron temperatures against the 
equations (dotted curves) and Lei equations (full curves) extemal electric field are shown for the same system 
is shown as a function of the electric field at T = 77 K. as in figure I ,  
The syslems me assumed LO have a Kane non-parabolic 
band with 3 varying degree of non-parabolicity. The 
eleclron density nc = lola c K 3 .  The numbers near Ihe 
cumes are the values of the non-parabolic coefficient OL 

(in units of ev-'). 

8ecUic Field (inrlan) 

optical dielectric constant K, = 10.8. The system is assumed to be homogeneous and the 
impurity density is taken as the electron density. 

First, we study the non-linear transport properties. In figure 1 we plot the non-linear 
drift velocity as a function of the electric field, calculated from MSD (dotted curves) and Lei 
(full curves) equations with varying degrees of non-parabolicity (a = 0.01, 0.1, 0.61, 1.0 
and lO.OeV-') at electron density ne = lot8 ~ m - ~ .  The lattice temperature is taken as 77 K. 
The drift-velocity-field behaviour obtained from these two sets of equations is similar and 
significantly depends on the energy dispersion relation: in the weakly non-parabolic band 
(a = 0.01, 0.1 ev- ') ,  there exist positive, zero and negative differential resistivity regions. 
In the medially non-parabolic bands (a = 0.61, l.OeV-'), the negative differential resistivity 
region disappears. In the strongly non-parabolic case (a' = lO.OeV-'), the curves become 
downward. The drift velocities in the medially to strongly non-parabolic bands obtained 
from the MSD equations are higher than those from the Lei equations within the whole range 
of the electric field. The electron temperature as a function of the electric field is shown 
in figure 2. The electron temperature in the MSD case is higher than that in the Lei case in 
medial non-parabolicity, while it is lower in strongly non-parabolic bands. 

In the case that the electric field direction is taken as the z axis, for the Kane band, 
the inverse effective-mass tensor iC introduced in the Lei equations, defined by (I l ) ,  has 
only non-vanishing diagonal components, &j=O ( i  # j ) ,  and only the diagond component 
along the E direction, which we denote as llm", plays a role in the force balance equation 
(14). To gain an idea of how the effective mass varies in the Lei equations, we plot in 
figure 3 the normalized inverse effective mass, m/m*, as a function of the electric field. 
The dependence of m/m* on the electric field is significant for the medially to strongly 
non-parabolic case. This inverse effective-mass tensor, which involves an average over the 
whole energy band, represents a major effect of the non-pwabolicity on transport. This is 
different from that of the cyclotron resonance experiment at low temperature, where the 
electron effective mass represents the effect of an equal-energy surface in the non-parabolic 
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Figure 3. Normalized inverse effective mass mlm; in 
the Lei equalions plotted against the electric field for 
the same system as in Kgure 1. The numben near the 
curves are the values of the non-parabolic coefficient 01 
(in units of ev-1). 
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Figure 4. Normalized l i n w  resistivities due to 
impurities. pi/&. obtained from the MSD approach 
(dotted curves) and from the Lei approach (full curves) 
are shown as a function of the elearon density at a 
lattice temperature T = 77K with a varying degree 
of non-parabolicity: h is the linear resistivity in the 
parabolic band. The scale of the vertical axis on the 
lefl-hand side refers to the curves of 01 = 0.01, 0.61 
and I.0eV-I and that on the right-hand si& to the 
cuwes ofcr = IO.OeV-’. The numbers near the curves 
ue the values of non-parabolic coefficient 01 (in units 
of ev-‘). 

band 1151. 
From the force balance equations, (2) and (14), the linear resistivities due to impurity 

from the two methods, PI-MSD and f i - l m j ,  can be written as 

and 

p,-~si = 1 sine d6 1 d$/ sin61 d61 [dqlU(q)lzqs- cos2 , 

C*(oO lc0s8l3 

(20) 

respectively. In these equations, c o s t  = cos6 c o ~ @ ~ + s i n 6  sine, cos@, U(q) is the statically 
screened electron-impurity potential and C(a)  and Cj are given by 

I k=-q/2coag 

e(e(k)-WT 

( e ( m ) - l r ) / T  + 1)2 
x [ I  + 2O[E(k)]4 

2 
C ( a )  = CK1 + 2orE(k)14 - 2olk:[1 + Zor&(k)l-’/mlf(&(k), T) (21) 

k 

and 
4ni 

n2e2(2n)J 
cj = 



Electron transport in non-parabolic Kane bands 6293 

The second term in (21) is small and can be neglected. 
In figure 4, we show the normalized linear resistivities due to impurity scattering, 

pilpo, as functions of the electron density (from loi6 to lo i8  cm-') at a lattice temperature 
T = 77K, po is the linear resistivity of the parabolic band under the same conditions. 
The dotted and the full curves refer to the results of the non-parabolic band from the MSD 
and Lei equations respectively. The scale of the vertical axis on the left-hand side refers 
to the curves of (Y = 0.01, 0.61, l.OeV-' and that on the right-hand side to the curves 
of (Y = lO.OeV-'. The deviation of the linear impurity resistivities of the non-parabolic 
bands from those of the parabolic band increases with increasing electron density because 
of the high-energy states occupied by the electrons. The numerical results indicate that 
the linear resistivities from these two equations are almost equivalent for small to medial 
non-parabolicity (e.g. 01 < 1.0) within the whole range of carrier density. For strongly non- 
parabolic bands, the difference of linear resistivities from these two equations appears. The 
coincidence of the linear resistivity predicted by both sets of equations for small and medial 
a can be understood by comparing (19) and (20). If, for dominant &(IC), the non-parabolic 
coefficient a satisfies the condition (YE <<l, we can expand pi-ki to first order in terms of 
(YE and get 

with 

For these small to medial a, which satisfy the inequality (YE <<l, we have 

and the two expressions for impurity-induced linear resistivity, (19) and (23), are equivalent. 

4. Conclusion 

We have investigated the linear and non-linear electron transport from MSD and Lei balance 
equations for systems with Kane band structure. We find not only that qualitatively different 
results are predicted by MSD and Lei equations in the case of tight-binding miniband 
conduction, but also that in the case of the Kane band the non-linear drift velocity and the 
electron temperature obtained from these two sets of equations exhibit a marked difference 
for medially and strongly non-parabolic systems. In the linear region, however, we find that 
the two sets of equations predict almost the same resistivities due to impurities for weak to 
medial non-parabolicity. 

To understand the physical reason for these markedly different predictions by MSD and 
Lei theories in the non-linear transport regime in strongly non-parabolic bands (both tight- 
binding-type and Kane-type bands), one should trace back to the physical foundation of the 
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original Lei-Ting theory [SI. The MSD equations for non-parabolic bands are. in fact, exactly 
the same as the balance equations of Lei and Ting [PI. with the original parabolic energy 
&(IC) in the electron density-density correlation function interpreted as the non-parabolic 
energy dispersion. However, the Lei-Ting equations were derived based on the separation 
of the centre of mass (with the electric field) from the relative electrons in the Hamiltonian. 
This separation is valid only for parabolic bands. When &(IC) becomes non-parabolic the 
complete separation is impossible and one cannot derive the force and energy balance 
equations as in the original Lei-Ting theory. Using them for non-parabolic bands may 
result in the loss of important non-parabolic effects other than those involved in the electron 
density-density correlation functions, as is the case in the MSD prescription. Lei's method 
for non-parabolic bands is not a trivial extension of the Lei-Ting balance equations. It is 
not based on the separation of the centre of mass from relative electrons, and non-parabolic 
effects are included, in addition to those related to the energy dispersion in the electron 
density-density correlation function, in (i) the centre of mass treated as a mass variable 
particle. and (ii) the non-parabolic velocity function u(S) = V@), rather than q / m ,  used 
in the force balance equation. It happens that in the case of linear transport these two 
non-parabolic effects almost cancel each other for a weakly to medially non-parabolic band. 
In the non-linear regime this cancellation disappears and quantitatively marked differences 
appear between the predictions of the MSD and Lei equations. 

X M Weng and X L Lei 
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